skip to main content


Search for: All records

Creators/Authors contains: "Xu, Xianchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Innovative human–machine interfaces (HMIs) have attracted increasing attention in the field of system control and assistive devices for disabled people. Conventional HMIs that are designed based on the interaction of physical movements or language communication are not effective or appliable to severely disabled users. Here, a breath‐driven triboelectric sensor is reported consisting of a soft fixator and two circular‐shaped triboelectric nanogenerators (TENGs) for self‐powered respiratory monitoring and smart system control. The sensor device is capable of effectively detecting the breath variation and generates responsive electrical signals based on different breath patterns without affecting the normal respiration. A breathing‐driven HMI system is demonstrated for severely disabled people to control electrical household appliances and shows an intelligent respiration monitoring system for emergence alarm. The new system provides the advantages of high sensitivity, good stability, low cost, and ease of use. This work will not only expand the development of the TENGs in self‐powered sensors, but also opens a new avenue to develop assistive devices for disabled people through innovation of advanced HMIs.

     
    more » « less
  3. Abstract

    Multifunctional metamaterials (MFMs) capable of energy harvesting and vibration control are particularly attractive for smart structures, wearable/biointegrated electronics, and intelligent robotics. Here, a novel MFM based on triboelectric nanogenerators (TENGs), which can harvest environmental energy and reduce vibration simultaneously, is reported. The unit cells of the MFM consist of a local resonator, an integrated contact‐ separation mode TENG, and spiral‐shaped connecting beams. A multiphysics theoretical model is developed for quantitatively evaluating the performance of the MFM by including the mechanical and electrical fields interactions, which is further validated by experimental testing. It is demonstrated that the TENG‐based MFM can not only effectively harvest vibration energy to power electronics but also dramatically suppress low‐frequency mechanical vibration. This work provides a new design and model for developing novel TENG‐based MFMs for advanced smart systems used in a variety of applications.

     
    more » « less